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SUMMARY

The threat to global health posed by unpredictable infections and
increasing antimicrobial resistance necessitates the urgent develop-
ment of drug combination therapies (DCBs) for infectious diseases.
Substantial efforts have been devoted to perfecting predictions for
DCBs, but data scarcity and poor model interpretability continue to
present significant barriers to the development of novel DCBs. To
address these issues, here we propose a framework for predicting
DCBs by combining knowledge graph representation learning and
the technique of community discovery for complex networks.Within
this framework, we demonstrate that multi-modal information and
multiple types of DCBs could significantly facilitate the predictive
performance and improve hit rates in realistic virtual screening sce-
narios. The high hit rate of 85% for experimental validation strongly
supports the proposal that our approach could effectively harness
useful information hidden in highly complex biological networks
and accelerate in silico discovery of pairwise DCBs for infectious dis-
eases and beyond.

INTRODUCTION

A wide adoption of knowledge graph (KG)-based deep learning (DL) methods has

yielded significant progress in pharmaceutical research, particularly in drug repur-

posing and drug-target discovery.1–3 By integrating huge amounts of biomedical

data, KG enables DL methods to learn latent features from highly complex biomed-

ical networks and thus improve the prediction performance for drug-discovery tasks.

The topological structure of KG can also be utilized by network analysis approaches

to identify hidden patterns and draw insights that are essential for drug-discovery

tasks.4–6 In fact, these techniques not only accelerate the discovery of drugs and tar-

gets, but combining KG-based DL approaches with network analysis also enables

broad generalization and improves model interpretability for various downstream

tasks in drug discovery.

In this study, we propose a methodology combining the KG-based DL techniques

with network analysis aiming to accelerate drug combination (DCB) discovery

against infectious disease. Infections are a dominant contributor to the global health

crisis. Since early 2020, the SARS-CoV-2 coronavirus disease 2019 (COVID-19)

pandemic has posed a major threat to global health. Antimicrobial resistance, one

of the leading public health threats of the 21st century, is another urgent issue

that needs to be solved.7,8 With such issues in mind, development of new therapeu-

tic treatments against infectious diseases are urgently needed. However, the
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process of developing clinically trialed new drugs is still costly, complex, and time

consuming.9 Hence, DCBs constitute an important and timely therapeutic strategy

for repurposing existing drugs during pandemics and overcoming antimicrobial

resistance. Synergistic DCBs of two or more drugs with distinct underlying mecha-

nisms for improving clinical outcomes provide multiple advantages, such as

improving efficacy, reducing toxicity, overcoming drug resistance, and repurposing

existing drugs for monotherapy.10,11 Conventionally, trials of effective DCBs are

prioritized by experts and then validated by biological experiments under the

setting of high-throughput screening.12–14 However, owing to the exceedingly large

combinatorial space of DCBs, exhaustive experimental trials are prohibitive, with

limited resources and time. Therefore, it is necessary to develop cost-effective

and mechanism-driven strategies to identify effective DCBs quickly.

In silico machine learning (ML) methods have become a viable alternative to experi-

mental screening and have been increasingly applied to predict and investigate novel

DCBs. Generally, computational prediction of DCBs can be classified into three cate-

gories: fingerprint-based (FP-based) approaches, molecular graph-based (MG-based)

approaches, and knowledge graph-based (KG-based) approaches.15 FP-based ap-

proaches only adopt molecular fingerprints derived from the chemical structures of

drugs as the model input,16–19 and MG-based approaches utilize the chemical struc-

tures as the model input directly and learn an embedding of DCBs via DL.20,21 How-

ever, the predictive ability of these two types of methods is often limited by insufficient

data of DCBs and the lack of interpretability. With an explosive growth of multi-omics

data, KG-based methods have become more popular as they make more holistic pre-

dictions by taking into account auxiliary facts conveyed by data from various sources.

Traditionally, the multi-omics data and chemical structures of drugs are encoded by

some handcrafted rules (e.g., similaritymatrices, one-hot encoding) as the feature rep-

resentation for classificationmodeling based on, for example, support vector machine

(SVM) or random forest (RF).22–25 Recently, DL approaches based on multi-omics data

have been applied for the prediction of synergistic combinations. For example, Jin

et al. proposed a DL framework named ComboNet to utilize networks of drug-target

interactions (DTIs) and target-disease associations, which enabled an effective in silico

search for synergistic combinations against SARS-CoV-2.21 Despite much effort hav-

ing been devoted to extracting effective information from KG, several challenges

remain in these KG-based methods. First, the predictive performance of existing ap-

proaches is still not satisfactory. The traditional methods depend on handcrafted fea-

tures to utilize omics data, which limits their ability to capture complex patterns from

KG. As a result, most approaches only utilized disease-related DCBs in realistic

screening scenarios, while our experiments demonstrate that different types of

DCBs can further enhance the prediction by combining KG-based DL framework

and network analysis. Second, DL approaches such as ComboNet face the problem

of adaptability, since the modules in a complex DL-based framework designed for

specific data such as DTIs are not easily transferable to other types of data such as bio-

logical pathways. Third, most existing DL algorithms lack transparent interpretability

to elucidate the underlyingmechanisms for effective DCBs, which is a crucial transition

step from computational modeling to scientific insights, experimental validation, and

acceleration of DCB discovery.26

In response to these challenges, we introduced KG-CombPred (KG-based DCB pre-

diction) as an end-to-end network embedding framework for drug pair scoring, inte-

grating large-scale omics data (e.g., ATC codes of drugs, gene ontology) with KG to

overcome the limitation of data for DCB and combining graph representation

learning to improve predictability and interpretability. The performance assessment
2 Cell Reports Physical Science 4, 101520, August 16, 2023
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of KG-CombPred on two general datasets and three disease-specific datasets

clearly demonstrates that our method outperformed the reported baseline

methods. In addition, we develop a feasible framework combining KG-CombPred

with community discovery (CD), in which the disease is defined as a community on

KG, to facilitate in the virtual screening (VS) of DCBs against specific diseases. We

devised a VS scenario for COVID’s DCB and revealed that by combining KG-

CombPred and CD, the precision rates of VS were significantly increased by 38%.

We then experimentally validated the framework on tuberculosis (TB) DCB

screening, and the experimental results clearly show that KG-CombPred-VS

achieved an 85% success rate (17 hits from 20 candidates). Furthermore, we imple-

mented several interpretable analysis schemes based on KG-CombPred to promote

the exploration of DCB mechanisms.
RESULTS

Drug combination prediction with KG-based deep learning

Leveragingmulti-modal data, such as chemical and biological information, is essential

for DCB prediction in order to improve prediction performance and enhance inter-

pretability. In this study, we introduce KG-CombPred, a general framework for attrib-

utedmultiplex heterogeneous network representation learning, aiming to explore the

potential of multi-modal KG in DCB prediction. The KG-CombPred architecture con-

sists of two components (Figure 1). The first component is a hierarchical random walk

to generate a corpus, which is a collection of node sequences representing the com-

plex connectivity patterns within the KG. The second component, called heteroge-

neous skip-gram, focuses on learning the representation for each node in the graph

based on the generated corpus. Specifically, the embedding of each node is designed

to have two parts: the base embedding and the edge embedding. The base embed-

ding is shared across different edge types and represents the inherent properties of

the node that are independent of the specific relationship type. The edge embedding,

on the other hand, is specific to each edge type and is aggregated from the embed-

dings of neighboring nodes (defined for that particular edge type). It captures the

contextual information of the node with respect to its neighboring nodes and the spe-

cific relationship type. By combining the base embedding and the aggregated edge

embeddings, a comprehensive representation for each node on each edge type is ob-

tained. Compared with traditional knowledge graph embedding (KGE) methods, KG-

CombPred (see experimental procedures) models information from different perspec-

tives by using both graph structure information and node attributes with an attention

mechanism. To illustrate the wide applicability and performance of KG-CombPred,

comparative evaluation was performed on two general datasets and three disease-

specific datasets (see experimental procedures; Tables S1 and S2). The general data-

sets contain DCBs for all kinds of diseases, whereas the disease-specific datasets are

evaluated on DCBs for a specific disease. For a comprehensive evaluation, we

compared the performance of KG-CombPred with four standard feature-basedML al-

gorithms (SVM, RF, deep neural network [DNN], and graph convolutional network

[GCN]) and two mainstream KGE approaches (i.e., DistMult and ComplEx). These

baseline approaches behave robustly and have been widely employed in the sce-

narios of in silico drug discovery including DCB prediction.16,17,21,27,28 Table S3 pro-

vides a comprehensive summary of these methods. For general datasets, the results

(Figure 2) indicate that the KG-based approaches (DistMult, ComplEx, and KG-

CombPred) are obviously superior to the DCB method that employs solely chemical

information, where the KG-CombPred yields the best performance. Compared to

the highest-performing DCB-based approaches, KG-CombPred improved areas un-

der the receiver-operating characteristic curve (ROC-AUC) and precision-recall curve
Cell Reports Physical Science 4, 101520, August 16, 2023 3
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Figure 1. Drug combination scoring via KG-CombPred

(A) Training pairs generation. The KG is composed of drugs (red nodes) and proteins (green nodes), including drug combinations (red lines), protein-

protein interactions (green lines), and DTIs (blue lines). Hierarchical random walk performs random walk operations on each type of edge separately,

thus generating a corpus for node representation learning.

(B) Heterogeneous skip-gram. The overall embedding of a certain node vi on each edge type r can be split into two parts: base embedding and edge

embedding. The base embedding is shared between different edge types, and the edge embedding is aggregated from neighbors’ edge embeddings.

For example, the node of a drug owns two types of edges (drug combinations and DTIs) and the corresponding edge embeddings with the same

dimension. These two types of edge embedding are concentrated and reshape the dimension by a trainable matrix Wtrans;r . It should be noted that the

initial base embedding and edge embedding for the nodes of drugs are defined as a parameterized function of molecular fingerprint (FP), while the

other types of nodes are randomly initialized.
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(PR-AUC) by 15% and 14% and 6% and 12% on dataset I and dataset II, respectively.

KG-CombPred also outperformed popular KGE approaches, boosting ROC-AUC by

6%–10% and PR-AUC by 5%–7%. The superiority of KG-CombPredmanifests the ben-

efits of utilizing auxiliary information in KG for predicting potentially useful DCBs.

In realistic scenarios, DCB prediction for specific diseases is more prevalent. However,

there is a shortage of DCBs for a specific disease. As a result, the predictive perfor-

mance of DCB-basedmethods on such training data is restricted. As shown in Figure 2,

the prediction performance of DCB-based models was poor. Yet we discovered that

prediction accuracy can be substantially improved by augmenting prior data (i.e., KG).

For the COVID and TB datasets, KG-CombPred exhibited the highest performance,

with ROC-AUC and PR-AUC improved by 8% and 13% and 4% and 9%, respectively,

when compared to the best-performing DCB-based approaches. For the HIV dataset,

DistMult demonstrated the best performance, with ROC-AUC and PR-AUC enhanced

by 5% compared to the top-performing Mol-GCN approach among DCB-based

methods. To further facilitate DCB prediction, we collected various types of DCB

data from the Continuous Drug Combination Database for disease-specific
4 Cell Reports Physical Science 4, 101520, August 16, 2023



Figure 2. Prediction performance on the general datasets

n = 3 independent experiments. Box plots show the median as the center lines, upper and lower quartiles as the box limits, and whiskers as the maximum

and minimum values, while dots represent outliers. ‘‘Specific’’ indicates that only disease-specific drug combinations (DCBs) are utilized for training,

whereas ‘‘Mix’’ indicates that all DCBs are used for training.
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datasets.29 The results indicate that the prediction performance of KG-basedmethods

is enhanced by the addition of other types of DCB data, particularly our proposed KG-

CombPred, which improved prediction performance by more than 10% across all

three datasets. When it comes to DCB-based methods, however, the added data

almost never lead to better prediction results and can even lead to a slight decline

in some datasets. This could be because DCB-based methods rely solely on chemical

information for training, which, due to the complexity of DCB mechanism of action,

cannot be fully represented by chemical information, and the addition of other types

of DCBs instead confuses the model. However, for KG-based techniques, information

such as DTI and protein-protein interaction (PPI) facilitate the model in scoring DCBs

from the perspective of the mechanism of action, hence enhancing the prediction per-

formance of disease-specific DCBs.

KG-CombPred combined with community discovery for virtual screening

In addition to determining whether there is a synergistic effect between two treat-

ments, linking a DCB to a specific disease is an even higher barrier for the VS of

DCBs. Owing to the polypharmacology of drugs and the complex effects of DCBs

on biological systems, a DCB commonly has a synergistic effect on multiple diseases.

However, the current DCB prediction methods do not take disease-related informa-

tion into account, which can be a barrier for VS in real-world scenarios. In this aspect

of characterizing diseases, the KG’s wealth of multi-omics information is naturally ad-

vantageous. In the KG, diseases are represented as a community consisting of func-

tional proteins, medicines, gene phenotypes, and so forth that are associated with

the disease (Figure 3A). Thus, DCBs for a certain disease can be confined to the link-

ages between drug nodes contained inside the disease community. Yet it is extremely

difficult to identify a comprehensive disease community based purely on expert

knowledge, given that the functional proteins, medicines, and so forth gathered

through literature survey and data mining are incomplete. In this study, we propose

a framework to enable the discovery of disease communities in the KG by combining

the community detection method OSSE and KG-CombPred, thus achieving a new

state-of-the-art success rate for VS of DCBs for a specific disease.30 By leveraging

expert knowledge, we can identify some initial disease seed nodes. Considering

that theremay be overlaps between different diseases in terms of, e.g., drugs and pro-

teins, the problem of disease community detection is defined as an overlapping com-

munity detection problembased on the initial seed nodes. OSSE expands these seeds

using the personalized PageRank.31 The PageRank algorithm measures the impor-

tance of each node within the graph in consideration of their neighbors, connections,

their importance, and the influence each one of those neighbors has. As a result, we

obtain an extended disease community, which may not be entirely accurate but is

adequate for narrowing the VS scope.

To assess the impact of disease community detection on VS, we performed VS in a

real-world situation for COVID-19 DCBs. By combining 36 COVID-related com-

pounds with 7,892 drugs in the KG, 28,344 pairs of candidate DCBs were generated,

including 48 COVID DCBs already reported in the literature. All DCBs were ranked

based on the scores provided by KG-CombPred. Next, the prediction scores for

DCBs that were not categorized into the COVID group indicated by the disease

discrimination model were lowered, resulting in a decrease in their rankings. For

comparison, we also trained a DCB-based disease discrimination model, which

used the RF algorithm based on molecular fingerprints to perform binary classifica-

tion of COVID-related DCBs and other types of DCBs. We then calculated the

ranking metrics of VS results for KG-CombPred, KG-CombPred with RF, and KG-

CombPred with CD. As demonstrated in Figure 3B, when the RF disease
6 Cell Reports Physical Science 4, 101520, August 16, 2023
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Figure 3. Community discovery-based virtual screening for drug combinations

(A) Disease community discovery (CD) illustration.

(B) Bar graph depicting the ranking metrics of KG-CombPred, KG-CombPred with RF, and KG-CombPred with CD.

(C) All shortest paths of DCBs in KG.
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discrimination model and CD were implemented, the ranking of COVID DCBs and

the hit rate were improved. The best performance was attained by KG-CombPred

with CD, which produced a 90% precision at 1,000-hit rate, a 38% improvement

over KG-CombPred. Based on the significant improvement in hit rates, we conclude

that KG-CombPred with CD provides an efficient and precise framework for virtual

DCB screening. The application scope of the KG-CombPred with CD framework

was then analyzed. In essence, the disease CD is primarily dependent on the topol-

ogy of KG; consequently, we explored the shortest path types of all COVID DCBs on

the KG, as shown in Figure 3C. The disease community can be more easily included

through CD if the shortest path length between DCBs is shorter. Hence, when the

shortest path length between DCBs is excessively long (e.g., five), it cannot be un-

covered by the technique of CD.
Experimental validation of KG-CombPred

To further illustrate the predictive power and generalization capability of KG-

CombPred in realistic scenarios, we designed a KG-CombPred-assisted VS (KG-

CombPred-VS) strategy and applied it to the discovery of novel TB DCBs with exper-

imental validation. The workflow of KG-CombPred-VS can be summarized in four

steps: (1) publicly available data curation for disease-specific KG construction; (2)

KG-CombPred-informed scoring for combinations ranking; (3) conditional filtering

for ranking score optimization and recommendations; and (4) feedback from wet-

lab experiments to refine the KG for model iteration (see experimental procedures

and Figure 4). In the VS process, 44 clinical anti-TB compounds were collected

from Lane et al. as the candidates of DCBs for VS, and 946 unique DCBs were gener-

ated for KG-CombPred-informed scoring.32 For DCB re-ranking, a conditional filter
Cell Reports Physical Science 4, 101520, August 16, 2023 7



Figure 4. Discovery of drug combinations against TB via KG-CombPred-VS

The strategy comprises four steps. (I) Data curation. Publicly available data are collected and cleaned for disease-specific KG construction and virtual

screening (VS), including reported drug combinations, prior knowledge (e.g., DTI, PPI), and promising drug candidates for potentially new pairwise

drug combinations. (II) KG-CombPred-informed scoring for combination ranking. Curated TB KG is used to train the KG-CombPred model three times

with different initializations. (III) Conditional filter for ranking score optimization and recommendations. Three modules including chemical similarity,

community discovery, and model prediction uncertainty are applied to filter predicted results and thus generate reliable recommendations. (IV)

Feedback from wet-lab experiments to refine KG for model iteration. With the updated TB KG by adding the results from the experiments, the steps II

and III are repeated to generate new recommendations for the next round of wet-lab experiments.
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was designed to generate accurate and reliable recommendations. The conditional

filter could factor in multi-view information, providing an expert customizable mod-

ule for recommendations. Inspired by the rationale for DCBs given by Jia et al.,33

pharmacodynamically synergistic DCBs could be attributed to their complementary

actions. Naturally, the chemical similarity between the two compounds of a TB com-

bination toward two different targets could be hypothesized to be low. To validate

our hypothesis, we calculated the chemical similarities for the collected 58 TB DCBs.

The results indicate that the chemical similarities for all combinations are under 0.4,

suggesting that the similarity filter with a threshold of 0.4 is reasonable (Figure S1).

After the similarity filtering, 874 DCBs remained for further analyses. Uncertainty

estimation of predictions is another crucial step toward providing reliable recom-

mendations as well as an informative measure that can be exploited an algorithm

to maintain the diversity of predictions. Deep ensembles, a widely applied method

in drug discovery,21,34 was adopted to give uncertainty estimation as the standard

deviation of the predictive distribution in this study. Acquiring the true label on a

drug pair with a high uncertainty for its predictions is informative (referred to as

exploration) and helps us to build an accurate model in a data-efficient manner.

We also wish to experimentally evaluate the predictions of DCBs that are expected

to give high DCB scores (referred to as exploitation), such that we can find effective

DCBs to fulfill the main purpose of this project. To achieve a balance between explo-

ration and exploitation, acquisition function (a) is defined as the function of upper

confidence bound (UCB): aðxÞ = bmðxÞ+ kbsðxÞ, where bmðxÞ represents the estimated
8 Cell Reports Physical Science 4, 101520, August 16, 2023
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mean of the predictive distribution and bsðxÞ represents the estimated uncertainty.

Here, k is set to 1. For more detailed information we refer readers to the work by Ber-

tin et al.,34 which provides a comprehensive introduction and evaluation about un-

certainty estimation. Thus, to maximize ranking scores, three modules are imple-

mented: chemical similarity, CD, and model prediction uncertainty. Finally, 31

DCBs were recommended as the potentially effective synergy in the first round of

VS (Round I) (Table S4 and Figure S5). Considering the conditions of the experiment

and the availability of the compounds in our lab, 14 TB DCB candidates were sent to

assays againstM. smegmatis in vitro, in which 12 DCBs were validated successfully in

the first round of the wet-lab experiments. The synergy of these combinations was

assessed by the fractional inhibitory concentration35 (see experimental procedures).

Among these, seven drug pairs are novel (i.e., have not been previously reported),

indicating that KG-CombPred-VS could enhance the existing DCB searching for data

enrichment and enables the discovery of novel synergistic anti-TB DCBs. In partic-

ular, five DCBs have been previously reported to exhibit anti-TB synergistic ef-

fects,36–40 suggesting that KG-CombPred-VS could facilitate the process of data

collection when few data are initially available. After this, we reproduced KG-

CombPred-VS utilizing the KG that had been enriched with newly discovered

DCBs. In this round, six DCB candidates were sent to the assays in vitro, in which

five DCBs were validated successfully in the first round of the wet-lab experiments

(Table S5 and Figure S5). In the second round of VS, we additionally conducted a

cytotoxic assay for two highly effective DCBs to demonstrate that the observed syn-

ergy of these combinations is not solely attributable to their high cytotoxicity (Fig-

ure S6). Among these, two drug pairs with anti-TB synergistic effects41,42 have

been previously reported and three drug pairs are novel. Since previous studies

have shown that DCBs tend to cause antagonisms instead of forming synergies,43,44

the number of false positives could be high in the ranked list of recommendations.

However, by integrating KG-CombPred, CD, and expertly calibrated conditional fil-

ters, our wet-lab experiments demonstrate that the DCB VS has a highly successful

hit rate of 85%.

Interpretability of KG-CombPred

Having evaluated the predictive power and effectiveness of the proposed strategy, we

turned to the mechanism interpretation. The network-based analysis and visualization

of the drug embeddings for DCBs were combined to justify the effectiveness and illus-

trate the interpretability of KG-CombPred. First, we selected a few drug pairs (with

knownmechanisms) in the Food and Drug Administration (FDA) dataset to investigate

whether we can infer the mechanisms from the KG-CombPred framework. To this end,

we visually inspected the distribution of the DCBs in the network of DTIs. As shown in

Figure 5A, the relations of DCBs tend to link nodes with a relative long separation dis-

tance in the DTI network, where the corresponding linked protein nodes serve

different biological functions. For example, sunitinib, a receptor tyrosine kinase inhib-

itor used for the treatment of renal cell carcinoma, could be used in combination with

hydrochlorothiazide for treating hypertension caused by sunitinib. This finding indi-

cates that the two drugs in combination tend to have a complementary exposure rela-

tionship to DTIs. This is one specific example to corroborate that KG-CombPred along

with properly compiled KG may capture the underlying mechanism of DCBs. For a

more systematic and large-scale analysis, we then conducted a clustering-based

investigation. Typically, synergistic DCBs could be divided into three groups: anti-

counteractive actions, complementary actions, and facilitating actions.33 Here, we

represented the visualization of the embeddings of the DCBs for the FDA dataset

via t-distributed stochastic neighbor embedding (t-SNE) and classified these DCBs

into three groups by k-means clustering (Figure 5B and Note S1). Through literature
Cell Reports Physical Science 4, 101520, August 16, 2023 9



Figure 5. KG-CombPred learns mechanisms of drug combinations

(A) Visualization of the FDA dataset, where the pink nodes represent the drugs and the green nodes represent the proteins. The blue lines represent the

DTIs and the red lines represent the drug combinations.

(B) Visualization of the DCBs in the FDA dataset via t-SNE, where the color of the nodes represents the corresponding cluster by k-means clustering.

(C) Heatmaps of the drugs’ attention scores on edge type of DCB and DTI in the FDA dataset used for the DCB and DTI training pairs, respectively.

(D) Heatmap of the mechanism similarities for the DCBs in the FDA dataset.
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identification, we found that the clustered DCBs (circled on Figure 5B) were used to

treat the same diseases, implying that KG-CombPred learned the pharmacological

patterns of DCBs (Table S6). For example, DCBs for the treatment of asthma and glau-

coma all belong to cluster 2, and their mechanisms could be attributed to facilitating

actions.45–49 Many DCBs in cluster 1 are for cancer treatments, andmost of these com-

binations are known to work via the anti-counteractive principle, implying that the two

drugs in a pair act on different targets in related or cross-talking pathways.50,51 Many

DCBs in cluster 0 are for high blood pressure and their combination mechanisms could

be attributed to complementary actions, suggesting that the targets regulated by the

two drugs in a combination are involved inmultiple points of a pathway.52–54 Given the

complicated modes of DCBs, we then further calculated the mode similarity (see

experimental procedures) to describe the pharmacological patterns for more precise

clustering (Figure 5D). Through this approach, the mechanisms of unexplored/pre-

dicted DCBs could be inferred by comparing the mode similarity with well-explored

DCBs. Besides interpreting KG-CombPred from a perspective of pharmacology, we

next made a model-based interpretation. Here, we visualized the attention score of

each drug in the DCBs of the FDA dataset for DCB prediction and DTI prediction,

respectively (Figure 5C). For the DTI prediction, the node of a drug mainly pays
10 Cell Reports Physical Science 4, 101520, August 16, 2023



Figure 6. KG-CombPred-VS generates reliable recommendations for TB drug combinations

(A and B) Visualization of the TB DCBs and corresponding DTIs, where the red nodes represent the drugs and the green nodes represent the proteins.

The green lines represent the DTIs and the red lines represent the DCBs.

(C) Visualization of the DCBs including the FDA, COVID-19, TB, and all TB candidates by the model trained in round I.

(D) Visualization of the DCBs including the FDA, COVID-19, TB, and selected TB candidates by KG-CombPred-VS in round I.

(E) Visualization of the DCBs of the FDA, COVID-19, updated TB, and all TB candidates by KG-CombPred-VS in round II.

(F) Visualization of the DCBs of the FDA, COVID-19, updated TB, and selected TB candidates by KG-CombPred-VS in round II.

The color of the nodes represents the type, and the marker of the node represents the corresponding cluster by k-means clustering.
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attention to themessage delivered from the related DTIs while for the DCB prediction,

the node of a drug aggregates the information from both DTIs and DCBs with roughly

the same contributions. In other words, the attention scores of DTIs and DCBs almost

contribute equally to our model. This phenomenon could be attributed to the larger

data size of DTIs (�15,000 pairs) compared with DCBs (768 pairs) in the compiled

KG. Overall, these analyses indicate that the DCB prediction could benefit from KG

and thus facilitate themechanism exploration of DCBs via the attention scores of DTIs.

In the second part, we applied the analysis tools displayed in the first part on TB

DCBs as an example to demonstrate the effectiveness of KG-CombPred-VS in real-

istic VS scenarios for DCB discovery. To explore the mechanism of TB DCBs, we visu-

alized the relationships between drugs and drug targets and extracted several

known TB DCBs for mechanism analysis. As convincingly shown in Figure 6B, most

drugs in the combinations act on different targets. To uncover further details of

the mechanisms for the newly discovered TB combinations, we applied mode simi-

larity to investigate the combination of ethionamide and rifapentine, found in round

II of the wet-lab experiment, as an example (Figure S2). The mode-similarity analysis

suggests that the combination of ethionamide and rifapentine follows the same

working principle for the combination of rifampicin and isoniazid, which can be
Cell Reports Physical Science 4, 101520, August 16, 2023 11
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attributed to making effects by both targeting RNA polymerase and mycolic acid.

Furthermore, to demonstrate the effectiveness of KG-CombPred-VS, we visualized

the distribution of the DCBs of different types in the two rounds of VS. Based on con-

ditional filtering, the selected DCBs are clustered in the area close to the known TB

DCBs (Figures 6C and 6D). In addition, the visualizations (Figures 6E and 6F) also

indicate that KG-CombPred could clearly distinguish three different types of DCBs.
DISCUSSION

For the treatment of emerging epidemic infections, DCB therapy could utilize ‘‘old

drugs’’ to enable a more rapid, more effective, and less toxic therapeutic strategy.

For instance, paxlovid, the first oral medication authorized for COVID-19 infection

therapy, is a combination of nirmatrelvir and ritanavir that has previously been used

in HIV combination therapy. Despite the fact that various computational approaches

have been employed for DCB predictions, they are largely ineffective on unseen

data, in part owing to the limited numbers of experimentally validated data available

for model training. In this study, we present a KG-based framework that combines the

deep graph learning model KG-CombPred and the technique of CD OSSE to predict

pairwise DCBs. The predictive capability of KG-CombPred has been thoroughly vali-

dated on five benchmarks, and our approach outperformed six baselines by 6%–15%

on ROC-AUC. With our approach, multidisciplinary information and multiple types of

DCBs could be leveraged to strengthen the predictive performance of specific dis-

eases, whereas this is not feasible with DCB-based methods (i.e., RF and Mol-GCN).

More importantly, we utilize CD in an innovative way to represent diseases in graphs,

thereby establishing connections between diseases and DCBs and increasing the hit

rates of VS by 38%. The high successful hit rate of 85% in two-round VS assessed by

thewet-lab experiments demonstrates that our KG-based framework provides reliable

and novel recommendations of synergistic drug pairs in vitro and may potentially

accelerate the discovery of effective DCBs in realistic drug-development projects.

Furthermore, to make predictions more reliable and trustworthy, a rigorous protocol

for analysis has been proposed to investigate the underlying mechanisms of DCBs

against infectious disease. We illuminate that the predictions of different types benefit

from different prior information and that DCB prediction is greatly facilitated by not

only DCB data but also DTI data. Moreover, we emphasize that the mode similarity

derived by KG-CombPred is a promising approach to decode the mechanism of

DCBs. Despite providing various advantages for DCB prediction, KG-CombPred

has several constraints. In comparison with DCB-based methods, KG-based ap-

proaches could integrate prior knowledge to facilitate prediction. However, prior

knowledge must be transformed into a format consistent with KG entities, and this

pre-processing step is highly dependent on expert knowledge. In addition, the

cold-start problem is a hurdle for KG-based approaches, meaning that making infer-

ence on a completely new compound with no known correlations (in the KG) is inap-

plicable. Consequently, it should be noted that KG connectivity is essential for CD.

Irrespective of these aforementioned concerns, KG-CombPred satisfies the urgent

need of DCBprediction for infectious disease and represents a novel approach to inte-

grating prior biological information with graph representation learning to accelerate

the discovery of infectious DCBs that can further inform combination therapy.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests should be directed to the lead contact (T. Hou) at

tingjunhou@zju.edu.cn.
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Materials availability

This study did not generate new unique reagents.

Data and code availability

The source data and codes of KG-CombPred are available on the Zenodo repository

at https://zenodo.org/record/7692097.
Dataset curation

In this study, we focus on anti-infectious pairwise DCBs. To evaluate the predictive

performance of KG-CombPred, we constructed six DCB benchmarks with the corre-

sponding knowledge graphs. Typically, the knowledge graph could consist of DTIs,

drug-DCBs, and protein-protein interactions, in which nodes can be drugs or pro-

teins and edges are indicators for the interactions or similarities between the con-

nected nodes. In this study, all drugs are represented as DrugBank ID or CID of

PubChem, and all proteins are represented as Uniprot ID to align entities in KG.

General dataset I, FDA

The FDA dataset includes 681 pairwise DCBs24 collected from the clinical data in the

Drug Combination Database (DCDB v2.0), Therapeutic Target Database (TTD

v5.1.01),55 and FDA Electronic Orange Book. For prior information enrichment,

217,160 human protein-protein interactions and 15,051 DTIs were collected from

multiple data sources.

General dataset II, DCGCR

The DCGCR dataset25 includes 173 pairwise DCBs from DCDB v2.0. To incorporate

drug-target network patterns and pharmacological patterns, 449 drug-protein inter-

actions and 139 ATC codes were collected from DrugBank.

Disease-specific dataset I, COVID-19

The COVID-19 dataset21 includes 179 SARS-CoV-2 from NCATS Open-Data Portal,

Riva et al.,56 Bobrowski et al.,19 and Tan et al.57

Disease-specific dataset II, HIV

The HIV dataset includes 114 HIV DCBs collected fromGordon et al.58 and CHEMBL.

Disease-specific dataset III, TB

The TB dataset contains 58 TBDCBs, 28,052 DTIs, and 44 TB single-agent data. Spe-

cifically, the TB DCBs were collected from seven publications.35,59–64

The detailed descriptions of KG for disease-specific datasets are listed in Table S2.

For general datasets, negative samples are generated pairwise by drugs in the data-

set and sampled with the same number as positives. To minimize the impact of data

variability on the results, 3-fold cross-validation was used to compare the predictive

performances of our method and other state-of-the-art methods. Because of the

scarcity of DCB data, we randomly divided each disease-specific dataset into

training and test sets in a ratio of 4:1.
KG-CombPred architecture

We formulate the problem of pairwise DCB prediction as a classification task. Given

a pair of drugs a and b with chemical structures and prior information, we aim to pre-

dict their probability of being a DCB with synergistic effect. The KG-CombPred ar-

chitecture (Figure 1) adapted fromGATNE65 can be decomposed into two modules:

training pairs generation and heterogeneous skip-gram.
Cell Reports Physical Science 4, 101520, August 16, 2023 13
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Training pairs generation is illustrated in Figure 1A. Given a heterogeneous network

G = ðV;E;AÞ, each node vi ˛V is associated with some types of feature vectors and

each edge is denoted as eðrÞij ˛ E, where r corresponds to a certain edge type/relation.

A = fxijvi ˛Vg is the set of node features for all nodes, where xi is the associated node

feature of node vi . The pair generation proceeds as follows. First, hierarchical random

walk performs random walk on each type of edge separately and thus generates a

corpus from KG for training pair generation. Specifically, given a view r on the network,

i.e., Gr = ðV; Er ;AÞ and a meta-path scheme T : V1/V2//Vt//V l, where l is the

length of themeta-path scheme, the transition probability at step t is defined as follows:

pðvi
�� vj; T Þ =

8>><
>>:

1��Ni;rXVt+1

��
0

0

ðvi; vjÞ˛ Er ; vj ˛Vt+1;

ðvi; vjÞ˛ Er ; vj;Vt+1;

ðvi; vjÞ;Er ;
where vi ˛V and Ni;r denotes the

neighborhood of node vi on edge type r . For example, with applying KG containing

three types of data including DCBs, DTIs and PPIs shown in Figure 1A, the corpus could

be fd1;d2;d3;d4g for type of DCB, fp1;p2;p3;p4g for type of PPI, and

fd2;p3;d3;p4g for type of DTI. The strategy of hierarchical random walk ensures

that the semantic relationships between different types of nodes can be properly incor-

porated into skip-gram model.66

The heterogeneous skip-gram is depicted in Figure 1B. Generally, the overall

embedding of a certain node vi on each edge type r could be split into two parts:

base embedding and edge embedding. The base embedding of node vi is randomly

initialized and shared between different edge types. The edge embedding is aggre-

gated from neighbors’ edge embeddings. We denote the edge embedding as ui;r ,

and concatenate all the edge embeddings for node vi as Ui with size s-by-m, where s

is the dimension of edge embeddings and m is the number of edge types:

Ui = ðUi;1;Ui;2;.;Ui;mÞ: (Equation 1)

To incorporate the chemical structures of drugs into representation learning, the

initial base embedding for the nodes of drugs is defined as a parameterized function

of molecular fingerprint (FP) as

bi = hdrugðxiÞ; (Equation 2)

where hdrug is a transformation function and xi refers to the FP. Similarly, the initial

edge embeddings uð0Þi;r for the nodes of drugs on edge type r is also parameterized

as the function of FP as

uð0Þ
i;r = gdrug;r ðxiÞ; (Equation 3)

where gdrug;r is also a transformation function that transforms the feature to an edge

embedding of drug vi on each edge type r and xi refers to the FP, while the base

embedding and edge embedding of other types of nodes are randomly initialized.

Additionally, a self-attention mechanism is used to compute the coefficients ai;r of

linear combination of vectors in Ui on edge type r as

ai;r = softmax
�
wT

r tanhðWr UiÞ
�T
; (Equation 4)

wherewr andWr are the trainable parameters for edge type r with size da and da 3 s,

respectively. Thus, the overall embedding of node vi for edge type r is

vi;r = bi + arM
T
r Uiai;r ; (Equation 5)

where bi is the base embedding for node vi ;ar is a hyper-parameter denoting the

importance of edge embeddings toward the overall embedding, and Mr is a
14 Cell Reports Physical Science 4, 101520, August 16, 2023
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trainable transformation matrix. In this way, KG-CombPred could be applied to un-

observed data and thus is suitable for realistic applications (e.g., new drugs/com-

pounds for VS of DCBs).

To model the heterogeneous neighborhood of a node, the heterogeneous skip-

gram model66 is introduced by maximizing the probability of having the heteroge-

neous context for node vi. Supposing that the random walk with length l on edge

type r follows a path P = ðvp1;//; vplÞ such that ðvp1; vptÞ˛ Etðt = 2/lÞ, denote
vpt ’s context as

C =
�
vpk

��vpk ˛ P; jk � tj % c; ts k
�
; (Equation 6)

where c is the radius of the window size. Thus, given a node vi with its context C of a

path, the objective is to minimize the following negative log likelihood:

� log Pq

��
vj
��vj ˛ C

��vi�� =
X
vj ˛C

� log Pq

�
vj
��vi�; (Equation 7)

where q denotes all parameters. Specifically, the probability of vj given vi is defined

as

Pq

�
vj
��vi� =

exp
�
cT
j $vi;r

�
P

k˛Vt
exp

�
cT
k $vi;r

� ; (Equation 8)

where vj ˛Vt ; ck is the context embedding of node vk and vi is the overall embedding

of node vi for edge type r. Finally, heterogeneous negative sampling is used to

approximate the objective function � log Pqðvj
��viÞ for each node pair ðvj; viÞ as

E = � log s
�
cT
j $vi;r

�
�

XL

l = 1

Evk�Pt ðvÞ

h
log s

�
� cTj $vi;r

�i
; (Equation 9)

where sðxÞ = 1=ð1 + exp ð� xÞÞ is the sigmoid function, L is the ratio of the number of

negative samples to the number of positive training samples, and vk is randomly

drawn from a noise distribution PtðvÞ defined on node vj ’s corresponding node set Vt .
Model building

In this study, six methods are effective and easily deployable on diverse scenarios of

DCB discovery for performance comparison in terms of ROC-AUC and PR-AUC:

SVM, RF, DNN, Mol-GCN, DistMult,67 and ComplEx.68 Specifically, the SVM, RF,

and DNN models were taken from Scikit-learn,69 the Mol-GCN model was con-

structed with DeepPurpose,70 and the DistMult and ComplEx model was con-

structed with AmpliGraph (https://doi.org/10.5281/zenodo.4792436). The four

DCB-based algorithms were trained on DCB data only, while the two KGE model

and KG-CombPred were trained on additional omics data. In the training process,

(1) the DCB dataset was firstly split into the training set and the test set in each

fold according to the scenarios (for details see ‘‘dataset curation’’). For each type

of data in the KG, a random walk is conducted using a hyper-parameter called ‘‘win-

dow size’’ (also called ‘‘length L’’ in random walk). Starting from each node in the

respective data type, neighbor nodes within the specified ‘‘window size’’ are

selected to form training pairs. (2) Both the base embedding and edge embedding

are initialized with uniformly distributed values between �1.0 and 1.0. Specifically,

the embedding for node of drug is a linear function (in Equations 2 and 3) of Morgan

fingerprint calculated by RDKit. For each algorithm, the best parameter set was iden-

tified using Bayesian optimization (Optuna python package, version 2.10.0).71 More

details about these baselines are provided in supplemental information. The perfor-

mance of each method was evaluated on the validation set by the ROC-AUC).
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KG-CombPred with community discovery for VS

To evaluate the impact of disease community discoveries on VS, we conducted a

realistic screening of DCBs for COVID. By combining 36 COVID-related compounds

with 7,892 drugs in the KG, 28,344 pairs of candidate DCBs were generated,

including 48 COVID DCBs already identified in the literature. We then inferred

whether the DCB belonged to COVID through CD and RF, respectively. The commu-

nity discovery algorithmOSSE was implemented with CDLIB.72 The initial seeds con-

sisted of 36 identified COVID-related drugs. Precision @ n is the VS evaluation

metric, which refers to the proportion of COVID-relevant DCBs among the top n

candidates. The shortest path on a graph is calculated by NetworkX (https://

networkx.org/).
TB assays in vitro

Strain and reagents

Considering the serious infectivity and pathogenicity ofMycobacterium tuberculosis

(Mtb), M. smegmatis mc2155 was selected as model bacteria to replace Mtb in this

study. Besides kanamycin sulfate purchased from Sangon Biotech, all compounds

were purchased from MedChemExpress (purity R98% by high-performance liquid

chromatography).

Cultivation of M. smegmatis

M. smegmatis were grown in Luria-Bertani medium, and 0.05% Tween-80 (Sigma-

Aldrich) was added to disperse the strain and avoid agglomeration. M. smegmatis

were incubated in a 220 rpm shaker incubator at 37�C, and the growth was moni-

tored by a BioTek Eon spectrophotometer (BioTek, Winooski, VT) until the logarith-

mic phase.

In vitro activity test using M. smegmatis

The compounds were dissolved in DMSO as a reserve solution, while sulfate com-

pounds were dissolved in purified water as reserve solutions. All compounds were

tested on M. smegmatis by the broth microdilution method. The 96-well plate was

incubated at 37�C for 48 h, and the absorbance under OD600 nm was measured to

determine the minimum inhibitory concentration (MIC50). MIC50 is defined as the

concentration at which 50% bacterial growth can be inhibited in contrast to the

drug-free control plates. The data were analyzed using GraphPad Prism software

version 6.0 (GraphPad, San Diego, CA, USA).

Drug activity combination assay

One drug was diluted horizontally along a 96-well plate with multiple concentrations

of MIC50 (see Table S7 and Figure S3), and the other was diluted along the longitu-

dinal direction of the plate, with 5 mL of drug A and 5 mL of drug B being added to the

respective well. In addition, the negative control without drugs and the positive con-

trol with positive drugs were set in the 96-well plate. The assay was performed with

three biological replicates.

To evaluate the effectiveness of a DCB, we analyzed the synergy between the drugs

in a combination using the fractional inhibitory concentration. Specifically, three

dose responses are measured for each pairwise interaction: (1) the dose response

for drug X; (2) the dose response for drug Y; and (3) the dose response for an equi-

potent mixture of drug X and drug Y. In this study, the dose response is assessed

based on the MIC50 (minimum inhibitory concentration at 50% bacterial growth).

As seen in Figure S4, the simulated 2D checkerboard assay serves as a visual demon-

stration of both synergistic (left) and antagonistic (right) pairwise DCBs. In each
16 Cell Reports Physical Science 4, 101520, August 16, 2023
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assay, one drug is incrementally increased along each axis, and the resulting growth

inhibition (represented by a color bar ranging from white to purple) is recorded for

each concentration combination. In the squares ranging from 1/16 MIC to 1/2 MIC, if

any score is >0.5 the DCB is considered to be synergistic.
TB cytotoxic assay

Cell lines and growth conditions

Mouse embryo fibroblast NIH3T3cells were cultivated in DMEM (Bio-Channel) sup-

plemented with 10% newborn calf serum (Evergreen) and 1% antibiotic-antimycotic

at 37�C in 5% CO2 in a humidified incubator. Before the tests, the cell lines were

passaged twice after throwing.

Drug cytotoxic activity combination assay

The cells were seeded at a density of 4,000 cells/well on 96-well plates and placed in

an incubator with 5% CO2 at 37�C. After 24 h, compounds were plated as a 6 3 6

dose-response combination matrix, and two rows of cells were separately treated

with serial diluted compounds. After 3 days, 10 mL of 5 mg/mL MTT solution was

added into each well and incubated for an additional 4 h, after which 100 mL of triplex

10% SDS-5% isobutyl alcohol-0.012 mol/L HCl (w/v/v) solution was added to

dissolve the formazan crystals. The absorbance at 570 nm was measured with the

reference wavelength at 650 nm using a spectrophotometer (BioTek Eon). The assay

was performed with three biological replicates.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xcrp.

2023.101520.
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